| 作为第一和通信作者6篇PRL、3篇PRA Rapid Communication,30篇PRA。 
 1. C. L. Liu, Yan-Qing Guo, D. M. Tong
 Enhancing coherence of a state by stochastic strictly incoherent operations
 Phys. Rev. A 96, 062325 (2017)
 2. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sjöqvist, D. M. Tong
 Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
 Phys. Rev. A 96, 052316 (2017)
 3. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sjöqvist, D. M. Tong
 Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces
 Phys. Rev. A 95, 062310 (2017)
 4. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sjöqvist
 Robust paths to realize nonadiabatic holonomic gates
 Phys. Rev. A 95, 052349 (2017)
 5. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong,
 Composite nonadiabatic holonomic quantum computation
 Phys. Rev. A 95, 032311 (2017)
 6. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
 Universal freezing of asymmetry
 Phys. Rev. A 95, 022323 (2017)
 7. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong
 Alternative framework for quantifying coherence
 Phys. Rev. A 94 (2016) 060302 (Rapid Communications).
 8. Pei-Zi Zhao, G F Xu, D M Tong
 Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases
 Phys. Rev. A 94 (2016) 062327.
 9. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
 General approach to find steady-state manifolds in Markovian and non-Markovian systems
 Phys. Rev. A 94 (2016) 052132.
 10. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong
 Measure-independent freezing of quantum coherence
 Phys. Rev. A 93 (2016) 060303 (Rapid Communications).
 11. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1
 Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes
 Phys. Rev. A 93 (2016) 012117.
 12. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong
 Nonadiabatic holonomic gates realized by a single-shot implementation
 Phys. Rev. A 92 (2015) 052302.
 13. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sjöqvist, L. C. Kwek
 Fast non-Abelian geometric gates via transitionless quantum driving
 Sci. Rep. 5, 18414 (2015).
 14. Xiao-Dong Yu, Yan-Qing Guo, D M Tong
 A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality
 New J. Phys. 17 (2015) 093001.
 15. Da-Jian Zhang, Xiao-Dong Yu, D M Tong
 Theorem on the existence of a non-zero energy gap in adiabatic quantum computation
 Phys. Rev. A 90(2014)042321.
 16. Long-Jiang Liu, D M Tong
 Completely positive maps within the framework of direct-sum decomposition of state space
 Phys. Rev. A 90(2014)012305.
 17. X D Yu, D M Tong
 Coexistence of Kochen-Specker inequalities and noncontextuality inequalities
 Phys. Rev. A 89(2014)010101 (Rapid Communications).
 18. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi
 Quantum computation in noiseless subsystems with fast non-Abelian holonomies
 Phys. Rev. A 89(2014)042302.
 19. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek,
 Nonadiabatic holonomic quantum computation in decoherence-free subspaces
 Phys. Rev. Lett, 109(2012)170501.
 20. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K Singh
 Non-adiabatic holonomic quantum computation
 New J phys., 14(2012)103035
 21. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong
 Robustness of nonadiabatic holonomic gates
 Phys. Rev. A 86(2012)062322
 22. D M Tong,
 Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
 Phys. Rev. Lett 106 (2011)138903.
 23. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong,
 Phase control of probe response in a Doppler-broadened N-type four-level system
 Phys. Rev. A 83(2011)043805.
 24. D M Tong
 Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
 Phys. Rev. Lett., 104(2010) 12:120401
 25. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek,
 Separable states and geometric phases of an interacting two-spin system
 Phys. Rev. A, 81(2010)1:012116
 26. S Yin, D M Tong
 Geometric phase of a quantum dot system in nonunitary evolution
 Phys. Rev. A 79 (2009)4: 044303
 27. C S Guo, L L Lu , G X Wei, J L He, D M Tong
 Diffractive imaging based on a multipinhole plate
 Optics Letters 34(2009)12:1813
 28. D M Tong, K. Singh, L C Kwek, C H Oh
 Sufficiency Criterion for the Validity of the Adiabatic Approximation
 Phys. Rev. Lett., 98(2007)15:150402
 29. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh
 Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit
 Phys. Rev. A, 73(2006)052103.
 30. D M Tong, K. Singh, L C Kwek, C H Oh
 Quantitative conditions do not guarantee the validity of the adiabatic approximation
 Phys. Rev. Lett., 95(2005)11:110407
 31. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh
 Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed
 Phys. Rev. A 71(2005)032106
 32. D M Tong, E. Sjoqvist, L C Kwek, C H Oh
 Kinematic approach to geometric phase of mixed states under nonunitary evolutions
 Phys. Rev. Lett., 93(2004)8:080405
 33. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma
 Operator-sum representation of time-dependent density operators
 Phys. Rev. A, 69(2004)054102
 34. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh
 General formalism of Hamiltonians for realizing a prescribed evolution of a qubit
 Phys. Rev. A, 68(2003)062307
 35. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson
 Relation between the geometric phases of the entangled biparticle system and their subsystems
 Phys. Rev. A, 68(2003)022106
 36. K Sigh, D M Tong, K Basu, J L Chen and J F Du
 Geometric phase for non-degenerate and degenerate mixed states
 Phys. Rev. A, 67(2003)3:032106
 37. S X Liu, G L Long, D M Tong and Feng Li
 General scheme for superdense coding between multiparties
 Phys. Rev. A, 65(2002)02
 |